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Abstract
Time-independent perturbation theory in the scattering domain, developed on
the basis of the quantum probability equation (Milward G C and Wilkin C 2001
J. Phys. A: Math. Gen. 34 5101), is extended to study the energy dependence
of the S-wave scattering phase shifts and probability density to second order
in the energy change. At low energies, the Bethe formula for the effective
range is reproduced and an analogous formula for the shape-dependent term
is also derived. The energy dependence of the probability density at short
distances is important in final state interaction theory and the method allows
the investigation of some of the prescriptions used there. Results from the
present approach are illustrated with soluble models.

PACS numbers: 03.65.−w, 03.65.Nk

1. Introduction

In two earlier papers, we studied time-independent quantum-mechanical perturbation theory
for a non-relativistic spherically symmetric single-particle system, with bound states being
addressed in paper I [1] and scattering states in paper II [2]. After introducing a small change
in the potential energy, U(r) = U0(r) + λW(r), it was shown that the modification in the
binding energy or the scattering phase shift depends only upon the perturbation λW(r) and
the probability density of the unperturbed problem P0(r) but not upon the properties of other
states of the system. While our derivation is completely different, the bound state results
turned out to be equivalent to those of Bender [3]. However, it has since become clear that
these formulae have a much longer history, dating back at least to Zel’dovich [4], though
they can be derived on the basis of even earlier methods, such as that proposed by Dalgarno
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and Lewis [5]. Different variants of the formulae have been independently discovered, as for
example by Aharonov and Au [6], but with rare exception [7], little emphasis has been placed
upon the scattering problem. It is the aim of the present paper to extend the scattering results
given in II to the study of their energy dependence by considering a small change in the energy
E as a perturbation.

The above authors all worked with the Schrödinger equation but, in a single-channel case,
it is always possible to impose real boundary conditions on the wave function u(r). In this
case the corresponding probability density P(r) = [u(r)]2 satisfies the quantum probability
equation4,

P(r)P ′′(r) = 1
2 [P ′(r)]2 + 2[U(r) − E]P(r)2 (1.1)

where units are chosen such that h̄ = 2m = 1. At the expense of imposing a second boundary
condition at the origin, this second-order non-linear equation can be differentiated to yield
a third-order linear form. However, despite the non-linearity, it is in fact easier to derive
perturbation theory directly from equation (1.1).

Of course, any result following from the probability equation must also be obtainable
from the Schrödinger equation. However, apart from giving a different perspective to standard
quantum mechanics [1], the probability approach leads naturally to a perturbation theory that
can be applied in similar ways to both the discrete and continuum parts of the spectra. This is
because one cannot use the orthogonality between different states and so the sum or integral
over intermediate states arising in standard second-order perturbation theory can have no place
here.

The formal integral for the energy perturbation of the scattering density has already been
given in II, but its application here is very different due to the changed boundary conditions.
The procedure is described for S-wave scattering in section 2, where a formula is derived
for the shape-dependent term in the effective range expansion that can be considered as an
extension of the well-known Bethe formula for the effective range [9]. Expressions for the
variation of the probability density to second order in the energy shift are also obtained.

To illustrate the application of the formulae, the Bargmann potential case is described in
section 3 before discussing the treatment of a more ad hoc zero-energy density. The energy
dependence of the S-wave probability density is of great use when discussing final state
interactions in nuclear reactions and in section 4 we compare the standard Watson formula
[10] with that obtained by extrapolating to a nearby bound or virtual bound state [11]. Although
both prescriptions contain the same pole information, the latter generally gives a somewhat
better description than the Watson factor in the important case where there is just one lightly
bound state. A summary and conclusions are provided in section 5.

2. Energy dependence of the probability density and phase shift

We consider S-wave scattering in a potential U(r) that vanishes beyond a given range R. It is
customary when deriving the effective range expansion to choose a normalization such that,
for distances larger than R, the probability density behaves as [12]

P̄ (k, r) = k2

sin2 δ
P̃ (k, r) = sin2(kr + δ)

sin2 δ
for r � R (2.1)

where δ is the S-wave phase shift at a momentum k = √
E, in units 2m = 1. This choice has

the advantage that, unlike the conventional density P̃ (k, r) used in II, P̄ (k, r) is smooth when
extrapolated to any nearby bound state pole of the scattering amplitude f (k) = eiδ sin δ/k.
4 It has been shown that the restriction to real boundary conditions may in fact be relaxed [8].
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However it has to be transformed into P̃ (k, r) before using it in physical problems. The
boundary condition at the origin is P̄ (k, 0) = 0.

Expand the density as a power series in k2 about some point k2
0;

P̄ (k, r) =
∑

n

1

n!

(
k2 − k2

0

)n
P̄ n(r). (2.2)

Similarly

Z(k) = k cot δ =
∑

n

1

n!

(
k2 − k2

0

)nZn (2.3)

where the conventional scattering length, effective range and shape parameter are given by
a = −1/Z0, r0 = 2Z1 and P = −Z2

/
r3

0 respectively. Though the convergence of the density
expansion of equation (2.2) will be very poor at large distances, our results will not in fact be
sensitive to this.

The large-r dependence of the first order change in P̄ (k, r) is fixed by differentiating
equation (2.1) with respect to k2;

P̄ 1(r) = r
sin(2kr + 2δ)

2k sin2 δ
− δ′ sin(kr) sin(kr + δ)

k sin3 δ
for r � R (2.4)

where δ′ = dδ/dk.
It follows from the results of II that, when the energy is changed by a small amount

�E = 2k�k from its value E0 = k2
0, the resulting change in the probability density is

P̄ 1(r) = −2P̄ 0(r)

∫ r

R

dy

P̄ 0(y)

∫ y

0
P̄ 0(z) dz + DP̄ 0(r) (2.5)

where the difference in sign from that in paper II is due to U(r) and E coming in with different
signs in equation (1.1). The value of D = P̄ 1(R)/P̄ 0(R) is fixed by imposing equation (2.4).

After considerable algebraic manipulation, the first order change in Z(k) becomes

Z1 = d(k cot δ)

dk2
= Q̄free

0 (∞) − Q̄0(∞) (2.6)

where the integrated densities are defined by

Q̄n(r) =
∫ r

0
P̄ n(r

′) dr ′. (2.7)

The ‘free’ superscript in equation (2.6) corresponds to the integral of a density P̄ free
0 (r) that

is identically equal to the asymptotic form of equation (2.1) for all values of r. Because of
this cancellation between P̄ 0(r) and P̄ free

0 (r) at large r, the limit R → ∞ has been taken in
equation (2.6). When evaluated at zero energy, this gives the Bethe formula for the effective
range [9], which has a nice pictorial description in terms of the difference between the areas
of the free and interacting densities at small distances.

The corresponding expressions for the first order density changes are

P̄ 1(r) = 2P̄ 0(r)

∫ ∞

r

Q̄0(r
′)

P̄ 0(r
′)

dr ′ − 2P̄ 0(r)

∫ ∞

0

(
Q̄free

0 (r ′) − Z1
)

P̄ free
0 (r ′)

dr ′

P̄ free
1 (r) = −2P̄ free

0 (r)

∫ r

0

(
Q̄free

0 (r ′) − Z1
)

P̄ free
0 (r ′)

dr ′ (2.8)

Q̄1(r) = 2Q̄0(r)

∫ ∞

r

Q̄0(r
′)

P̄ 0(r
′)

dr ′ − 2Q̄0(r)

∫ ∞

0

(
Q̄free

0 (r ′) − Z1
)

P̄ free
0 (r ′)

dr ′ + 2
∫ r

0

[Q̄0(r
′)]2

P̄ 0(r
′)

dr ′
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Q̄free
1 (r) = −2Q̄free

0 (r)

∫ r

0

(
Q̄free

0 (r ′) − Z1
)

P̄ free
0 (r ′)

dr ′ + 2
∫ r

0
Q̄free

0 (r ′)

(
Q̄free

0 (r ′) − Z1
)

P̄ free
0 (r ′)

dr ′. (2.9)

Now the formulae in equations (2.6) and (2.8) are valid for all values of the starting energy
E0 and so we can evaluate the higher order changes by differentiating these results with respect
to energy. Formally,

Zn+1 = [
Q̄free

n (∞) − Q̄n(∞)
]

(2.10)

where the Q̄n+1(r) is obtained by integrating

P̄ n+1(r) = ∂

∂E0
P̄ n(r) (2.11)

with respect to r.
The expression for the second order shift in Z follows immediately from the insertion of

equations (2.9) into (2.10);

Z2 = 2
∫ ∞

0

{
1

P̄ free
0 (r)

(
Q̄free

0 (r) − Z1
)2 − 1

P̄ 0(r)
(Q̄0(r))

2

}
dr. (2.12)

Unlike the Z1 case, this result does not have a simple geometric interpretation. It is important
to note that, in cases where the densities P̄ 0(r) or P̄ free

0 (r) have nodes at some point on the
real axis, then these are of even order and, as shown in I, these can be avoided by distorting
the contour into the complex plane to leave finite integrals.

The second-order change in the density becomes

P̄ 2(r) = 1

2

(P̄ 1(r))
2

P̄ 0(r)
+ 2P̄ 0(r)

∫ ∞

r

Q̄1(r
′)

P̄ 0(r
′)

dr ′ − 2P̄ 0(r)

∫ ∞

0

(
Q̄free

1 (r ′) − Z2
)

P̄ free
0 (r ′)

dr ′. (2.13)

It is straightforward, but tedious, to extend these formulae to higher orders.
Of importance in final state interaction theory is the energy dependence of the density at

short distances. Characterizing this by

γn = P̄ n(r)

P̄ 0(r)

∣∣∣∣∣
r=0

(2.14)

equations (2.8) and (2.13) show that

γ1 = 2
∫ ∞

0

[
Q̄0(r)

P̄ 0(r)
−

(
Q̄free

0 (r) − Z1
)

P̄ free
0 (r)

]
dr (2.15)

γ2 = 1

2
γ 2

1 + 2
∫ ∞

0

[
Q̄1(r)

P̄ 0(r)
−

(
Q̄free

1 (r) − Z2
)

P̄ free
0 (r)

]
dr. (2.16)

3. Illustrative examples

The formulae of section 2 can be tested for the delta-shell potential, δ(r − R), for which the
Zi and γi can be obtained analytically. However, to show the applicability to cases where the
potential does not have a sharp cut-off, consider the Bargmann potential [13]

U(r) = − 2b2(b2 − a2)

(b cosh br + a sinh br)2
· (3.1)

This case is exceptional in that Z2 and all the higher terms in the effective range expansion
are identically zero, leaving only Z0 = ab/(b − a) and Z1 = 1/(b − a).
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Figure 1. Integrands of equations (2.6) (dashed line) and (2.12) for the effective range and shape
parameter terms for the Bargmann potential of equation (3.1) evaluated for a = 1, b = 2.

It is typical that the integrand for the Bethe formula of equation (2.6) for Z1 converges
faster than that for Z2 of equation (2.12), with the latter normally having one more oscillation.
This is illustrated in figure 1 for parameters a = 1 and b = 2. The resulting integration can
be performed analytically and, in this case, the oscillations for Z2 exactly cancel out.

The merit of procedure developed in this paper is that it can be carried out, at least
numerically, for an arbitrary zero-energy probability density. As an example of this, consider
the case where the density corresponding to a unit scattering length is regularized by an
exponential to give the correct boundary condition at the origin.

P̄ 0(r) = (r + 1 − e−r )2 P̄ free
0 (r) = (r + 1)2. (3.2)

The corresponding integrated densities are

Q̄0(r) = − 7
2 + r + r2 + 1

3 r3 + 2(2 + r) e−r − 1
2 e−2r

Q̄free
0 (r) = r + r2 + 1

3 r3
(3.3)

and hence, from the Bethe formula of equation (2.6), we see that Z1 = 7
2 .

The Z2 integrand has the expected oscillation, as shown in figure 2. The corresponding
integral cannot be performed analytically but a numerical evaluation shows that Z2 = −4.103.
The variation of the density at short distances is characterized by γ1 = 4.26 and γ2 = 3.17.

4. Final state interactions

In his seminal work, Watson [10] discussed processes such as pion production in proton–
proton scattering, pp → pnπ+, where an enhancement is seen in the excitation energy of the
emerging proton–neutron pair caused by their final-state interaction in the 3S1 and 1S0 waves.
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Figure 2. Integrands of equations (2.6) for Z1 (dashed line) and (2.12) for Z2 in the case defined
by equation (3.2).

It is argued that, due to the large momentum transfer required to produce the pion, the energy
dependence of the matrix element may be taken to be proportional the square of the wave
function evaluated at r = 0;

F(k) ∝ |ψ(0)|2 ∝ P̃ (k, 0) = 1

Z2 + k2
P̄ (k, 0) (4.1)

where we have used equation (2.1) to write the enhancement factor in terms of the density P̄ (r)

used in this work. What became known as the Watson factor, 1/(Z2 + k2), corresponds just
to neglecting the momentum dependence of P̄ (k, 0). This is a highly successful approach for
small k in cases where the scattering amplitude has a nearby pole as, for example, the deuteron
bound state in the pn S-wave triplet state or the virtual state in the singlet. It generally decreases
too fast at larger values of k and various simple recipes have been proposed to correct this [14].

In an alternative approach, Fäldt and Wilkin [11] have shown that, in the neighbourhood
of a loosely bound S-wave state at k2 = −α2, the probability distribution for the scattering
state P̃ (k, r) is linked to that of the normalized bound state density P(r) by the extrapolation
theorem,

P̃ (k, r) ≈ 1

2α(k2 + α2)
P (r) (4.2)

the approximation becoming an inequality as k2 → −α2. A similar energy dependence is
found for a virtual bound state though there is then no bound state density to set the overall
scale in equation (4.2). Since we have seen that the energy dependence of the short range
probability density is completely determined by the zero-energy density, we can use this to
study which of the approaches gives the better description.

For concreteness and simplicity, consider the case of the spherical well where the potential
U(r) = −U0θ(R − r) with strength U0 = 2.8 and range R = 1 leads to a single bound state
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with α = 0.1587. By using equations (2.6) and (2.12), or from an algebraic evaluation, the
parameters of the effective range expansion are found to be Z0 = −0.1469, Z1 = 0.4702 and
Z2 = 0.0589.

It has been shown that the deviation from the extrapolation theorem away from the pole
is given by [15]

2α(k2 + α2)
P̃ (k, r)

P (r)

∣∣∣∣
r=0

= 1 +
1

4

[
4 + αR

U0 − α2
− R2

1 + αR

]
(k2 + α2) + O((k2 + α2)2)

= 1 + δ1k
2. (4.3)

For the above case the energy variation at short distances is ≈1 + 0.159k2, to be compared
with 1 + γ1k

2 = 1 + 0.406k2. The Fäldt–Wilkin approach therefore gives a slightly better
description than the simple Watson factor. However, it must be stressed that in this case these
differences are much smaller than the energy dependence arising from the pole factor itself.

The situation is reversed if the potential strength is increased to U0 = 22.547. There is
then a deeply bound state as well as a shallow 2S level which has the same binding energy
as in the previous example. The evaluation of Z2 and γ1 from equations (2.12, 2.15) requires
integration in the complex r-plane in order to avoid the node of the 2S wave function. The
effective range parameters are Z0 = −0.1460, Z1 = 0.4932 and Z2 = 0.1332. Since the
value γ1 = 0.093 is only half that of δ1 = −0.17, in this case the Watson model is a little
better.

The spherical well example is typical, and numerical studies of other cases suggest that
whenever there is just a single bound or virtually bound state close to threshold, the Fäldt–
Wilkin approach represents a more robust approach than that given by the Watson formula.
It is therefore not surprising that it gives a successful prediction of the total cross section for
pp → pnπ+ in terms of that for pp → dπ+ [16].

5. Conclusions

In this series of three papers we have derived time-independent perturbation theory for both
scattering and bound states from the probabilistic formulation of quantum mechanics. The
seemingly greater complication arising from the use of a non-linear second-order equation
rather than the linear Schrödinger equation is balanced by the uniformity of approach afforded
by the probability equation in the treatment of the discrete and continuous parts of the spectrum.

In this paper we have concentrated on the study of the energy dependence in the scattering
domain, showing how the probability density at one energy uniquely determines that at another
energy in terms of quadratures. This allowed us to obtain formulae for the different terms in
the effective range expansion, thus generalizing the standard Bethe expression for the effective
range. Although we have only considered S-wave scattering, there is no inherent difficulty in
considering higher partial waves, as was done in II, but these are generally of lesser importance
in final-state-interaction applications.

With the advent of modern fast computers, one has to question the need to resort to
perturbation theory. The main advantage of this is its simplicity and transparency. One result
of our work is the observation that the shape of the wave function determines its energy
dependence and this means that one has to be careful in separating the two in any empirical
model. This is important in final-state-interaction theory and we have shown how our technique
can be used to investigate different approximations. In particular the extrapolation theorem of
equation (4.2) seems to give a better description than the Watson factor for cases where there
is just one bound or virtual state pole close to threshold.
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The unified approach allows one to combine different elements. Thus it would, in
principle, be possible to take the zero-energy S-wave probability density, first perturb in the
energy and then introduce the centrifugal barrier potential 
(
 + 1)/r2 as a perturbation to
provide an estimate for the P-wave scattering amplitude, though the question of convergence
would then have to be seriously addressed. Alternatively, since the extrapolation theorem
becomes exact at the position of the bound state pole [11], one could then employ the bound
state density to derive the terms in an effective range expansion about the pole position.

The probability approach has, of course, its limitations, not being able to handle coupled-
channel problems nor time-dependence, where phase information and interference effects are
crucial. Nevertheless, we suggest that, in addition to allowing one to derive useful formulae,
the probability perturbation approach presents a different and interesting view on some aspects
of quantum mechanics.
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[15] Fäldt G and Wilkin C 1998 Am. J. Phys. 66 876; Unfortunately there was a misprint of a factor of −2 in

equation (17) of this reference.
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